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FOREWORD

This report was prepared by the Space and Information Systems

Division of North American Aviation, Inc., Downey, California, for the

George C. Marshall Space Flight Center, National Aeronautics and Space

Administration, Huntsville, Alabama, under Contract No. NAS8-11490,

"Study of Longitudinal Oscillations of Propellant Tanks and Wave Propaga-

tions in Feed Lines, " dated January 6, 1965. Dr. George F. McDonough

(Principal) and Mr. Robert S. Ryan (Alternate) of Aero-Astrodynamics

Laboratory, MSFC, are Contracting Officer Representatives. The work is

published in five separate parts:

Part I - One-Dimensional Wave Propagation in a Feed Line

Part II - Wave Propagation in an Elastic Pipe Filled With

Incompressible Viscous Fluid

Part HI - Wave Propagation in an Elastic Pipe Filled With

Incompressible Viscous Streaming Fluid

Part IV - Longitudinal Oscillation of a Propellant-Filled Flexible

Hemispherical Tank

Part V - Longitudinal Oscillation of a Propellant-Filled Flexible

Oblate Spheroidal Tank

The project was carried out by the Launch Vehicle Dynamics Group,

Structures and Dynamics Department of Research and Engineering Division,

S&ID. Dr. F.C. Hung was the Program Manager for North American

Aviation, Inc. The study was conducted by Dr. Clement L. Tai (Principal

Investigator), Dr. Michael M.H. Loh, Mr. Henry Wing, Dr. Sui-An Fung,

and Dr. Shoichi Uchiyama. Dr. James Sheng, who started the investigation

of Part IV, left in the middle of the program to teach at the University of

Wisconsin. The computer program was developed by Mr. 1%.A. Pollock,

Mr. F.W. Egeling, and Mr. S. Miyashiro.
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ABSTRACT

In this report, the dynamics of elastic propellant /

feed lines with streaming fluid are analyzed using the

nonlinear one-dimensional unsteady compressible

fluid flow equations. The viscous effect of the fluid

is assumed to be expressible inthe form of a hydrau-

lic resistance corresponding to turbulent flow.

Transfer functions relating the pressures, velocities,

and the corresponding phase angles were derived

from the linearized equations for the perturbed state.

The governing equations were also converted into a

system of four first-order ordinary nonlinear differ-

ential equations by the method of characteristics.

These were then transposed into finite difference form

and solved numerically on a digital computer. Impulse,

step, and sinusoidal velocity disturbances were con-

sidered in the numerical solution for a feed line with

and without a control device. The physical param-

eters of the liquid hydrogen line on the Saturn S-II

engine are used for the numerical calculations to

illustrate the results.

- V -
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INT R OD UC T ION

Pressure wave propagation in a pipe filled with fluid has been investi-

gated extensively, from the early studies of surging phenomena to the recent

work on unsteady flow in blood vessels and hydraulic control systems

(References 1 to 17). Various simplifying assumptions were employed in

each particular problem to facilitate a mathematical solution. In general,

the formulation is not applicable to any problem with conditions other than

those appropriate to the particular problem.

The classical theory of surging phenomena or "water hammer," formu-

lated by Joukowsky (Reference l), is based on the linearized one-dimensional

Navier-Stokes equation for an inviscid fluid. It assumes that the pressure is

uniform across any section of the pipe and that the deflection of the pipe is

equal to the static deflection due to the instantaneous pressure in the fluid.

This theory has since been extended to two-dimensional space (References 12

and 13), with some of the simplifications made in the Joukowsky theory

relaxed (Reference 14). As far as the relations between fluid velocity,

pressure, and hoop stress are concerned, however, the improved theory

gave essentially the same results as Joukowsky's theory, which had been

c onfirmed experimentally.

Recently, the method of characteristics was applied successfully to

the numerical solutions of one-dimensional "water hammer" analysis

(References 16 and 17), including the nonlinear terms for the convective

acceleration and fluid friction. Similar nonlinear differential equations

describing the unsteady motion of a viscous compressible fluid in tubes in

terms of a hydraulic resistance were also applied to the self-induced oscil-

lations of heavy fluids (Reference 18). In this reference, the fluid density

term is assumed to be large, and the pressure gradient term is neglected,

thus making it possible to reduce the problem to the solution of first-order

quasilinear partial differential equations with nonperiodic boundary

c onditions.

The investigation of the pressure wave in the blood vessel was con-

cerned primarily with the influence of the elasticity of the walls on the

propagation of sound through the fluid medium in the vessel. Since the

physiologists considered the distensibility of the tube to be of far greater

importance than the compressibility of the fluid, the authors assumed an

incompressible and viscous fluid (References 6 to 8). The stresses and

shear are expressed in terms of the displacements, but the inertia terms

- 1 -
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are neglected. The significance of the effect of viscosity and internal

damping on the wave propagation is somewhat obscured in the authors' over-

simplification of the complicated solution.

The approaches used in the hydraulic and pneumatic control systems

are generally straightforward. Since pipe diameters are small, the

elasticity of the pipe may be neglected; and, because the flow rate is usually

low in the control system, the use of linearized equations with the laminar

friction loss (References 9 to ii) is justified. The results of the theoretical

frequency-response analysis compare quite well with the experimental data

from the test.

In the present investigation, it is assumed that the propellant line

connects the propellant tank and propellant pump. The diameter of the line

is much larger than that of hydraulic control lines or blood vessels, but

much smaller than the diameter of penstock in the lower plant. The source

of disturbance may be either the fuel sloshing in the propellant tank or the

variation of flow in the propellant pump. Another possibility is that the

changes in the natural frequency of the missile structure at different flight

times may also create unsteady flow in the fuel line.

The aim of this study is to determine analytically the general dynamic

behavior of the unsteady motion and to construct a reasonable model that

can be applied directly to the overall system analysis of longitudinal

oscillations of large missiles.

-2-
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SECTION i. EQUATIONS OF UNSTEADY FLOW IN PIPES

If we consider the motion of the fluid in a pipe as a whole and

introduce the _average values of velocity u, density p, and pressure p over

the cross-section A, the basic equations describing the unsteady motion of

a viscous compressible fluid in an elastic tube in terms of a hydraulic

resistance are the law of conservation of mass

a a

a--x(puA). = - -_ (pA) (i)

and the law of momentum

a a ap
(puA) + _-x (puZA) = -A _x - A_(u) (Z)at

The function _ (u) is taken to be linear for laminar flow

_(u) =_u, for R< Z000 (3)

and quadratic for turbulent flow

f Z

_(u) =_--_ pu , for R > Z000 (4)

where _ is the viscosity, D the inside diameter of the pipe, R the Reynolds

number, and f the Darcy-Weisbach resistance coefficient.

To the above equations must be added the state equation for compres-

sible flow

dp = -_I dp (5)

where K 1 is the bulk modulus of the fluid which is defined as the change in

pressure per unit change in specific volume.

-3-
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If the pressure variation is small, Hooke's law can be considered

valid for a liquid, i.e.,

p-P_KI ))P=Po +
(6)

Po

dp = -K-_Idp
(7)

where the subscript "o" designates the variables at steady state.

I. 1 VARIATION OF CROSS-SECTIONAL AREA OF A PIPE AS A FUNCTION

OF PRESSURE

It will be assumed that the pipe has a thin elastic wall and is made of

a material for which Hooke's law holds true. Let the initial pressure in the

pipe be p and the radius be r. Then the tangential and axial forces per unit

width are given by

Ne No

N o = 0-@h = pr

N =0-h=C
x x ipr

(8)

Figure i.

and the tangential strain by

1 (_8 pr i) (9)_0 =_E - VO-x) = Eh (1 - vC

where C I = 1/2 for a pipe fixed at one end and free to move throughout the

rest of its length, C 1 = v for a pipe anchored against longitudinal movement

along its length, and Cl = 0 for a pipe having expansion joints between

anchors throughout the length of the pipe.

-4-
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or

When the internal pressure is varied, the tangential strain varies by

5r 1

5_ 0 = m = N (1 - vC1) (pSr + rSp)r Eh

_r =

r25p (1 - vC1)

Eh - rp (1 - vC1)

Multiplying the above equation by Z_r and denoting C = 1 vC1, it becomes

5A- 2rACSp
Eh - Crp (10)

From Equation (9), Eh =(C/e0)Pr. Since c 0 << 1, the term Crp is

negligible in comparison with the term Eh, and hence

CDA

dA- Eh dp (11)

1.2 BASIC EQUATIONS OF UNSTEADY MOTION

Combining (i), (5) and (11) yields

[1 +CD] 8p Ou I_l+ CE] Dp (IZ)

Define

: v + = p (13)
a

where a is the velocity of pressure wave propagation in a fluid medium con-

tained in an elastic pipe. Since the velocity of sound in the fluid is

a2 = dp/dp = K1/p, the term CD/Ehis a correction of K1, accounting for

the elasticity of the pipe wall. Equation (12) now becomes

From (I) and (2), we have

ap o___Ep = z O___u
8--_+ u 8x - pa 8x

(14)

Ou 8u 1 @p 1 _(u)
o-[ -;Ox-;

(15)

_

SID 66 -46 -1
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Equations (14) and (15) are the basic equations of unsteady motion in

an elastic pipe. For small pressure variations, the value of p in the above

equations may be considered to be equal to Po of the steady state.

In the case where the effect of missile acceleration a m and the angle, O,

which the pipe makes with the horizontal are to be taken into consideration,

the term a m sin 0 has to be added to Equation (15); i.e. ,

0u 8u _ 1 8p 1 _(u) + a m sin e (15a)
7_- + u Ox p Ox p

I. 3 INITIAL AND BOUNDARY CONDITIONS

It will be assumed, in this treatment of unsteady fluid motion in pipes,

that up to the moment t = 0 the fluid is in steady motion; i.e. ,

o) = u
0

p(x, o) = Po

(16)

The boundary conditions depend on the nature of the disturbance of flow

at the boundaries. The following boundary conditions are expected to be

encountered in the present problem: (I) at one end of the pipe the pressure

is given as a function of time (as a particular case, this pressure may be

constant); (2) at the other end of the pipe a device is connected which varies

the flow rate of the fluid with time according to some known law--this may

be a pump, turbine, etc. This device may be connected either directly to

the pipe or through a chamber serving to regulate the flow rate or to

diminish the pressure oscillations. The boundary conditions in such cases

as these can be written functionally as

x = o p(o,t) = Po + f(t) (17a)

8
x = £ K _Q(_,t) + Q(£,t) = g(t) (17b)

where f(t) and g(t) are given functions, with

f(t) = g(t) = 0 at t < 0

Q is the mass flow rate and K is a positive constant characterizing the type

of chamber in those cases where a chamber is present.

4

-6-
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The boundary conditions of three cases at x = % when the pipe is

connected to a chamber designed to reduce the pressure oscillations will

be discussed in the following paragraphs.

I. 3. I Air Chamber

Let p andVbe the pressure and volume of the air in the vessel, and

let Po and Vo be their steady flow values. If the compression of the air in

the chamber is considered as isothermal, then

pV = PoVo (185

During unsteady flow the increase in the quantity of liquid in the vessel will

be

d(V - V)
o

Po dt - (puASx= % - Ql(t) (19)

where (puA)x=_ = Q is the mass flow rate of the liquid out of the pipe and

into the air vessel, and Ql(t) is the mass discharge rate of the liquid from

the vessel.

For small pressure variations, it is permissible to use the linearized

continuity equation. From (18), (14), and (135 it follows:

d___y= _.P°V° 8p Vo K 8Q

dt 2 0t Po 8xp PoAo

(20)

The substitution of (20) into (195 gives the following boundary conditions

atx= _:

VK
o 8Q

Po Ao Ox
Q = Ql(t) (21)

1.3.2 Surge Tank

If the same notation is used, then the rate of increase of the liquid

volume in the surge tank is

dV

Po-_ = Qx=_ - Q1 (t) (22)

-7 -
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where

V= qA
s

rl = the increase of liquid level in the surge tank

A = cross-sectional area of the tank
s

The increase in pressure of the liquid in the tank will be

V

P - Po = Po gq = Po g
s

dvA AIK o 
__ _ s Op _ s 'P
dt pog at pog _ _-Ao x]o

Hence the boundary condition at x = £ will have the form

A
s K aQ

A pog axo

+ Q = Ql(t)
(23)

1.3.3 Tank-Type Damper

The variation of the mass rate of the liquid contained in the damping

tank is

dpV
d--t-- = (pAu)x=£ - Q1 (t) (24)

where V is the volume of the tank, Qx=# = (pAu)x=,_. is the mass of liquid

passing from the pipe into the tank, and Ql(t) is the mass discharge rate.

If the tank volume is V = AdL with the variation of tank length being

assumed small, then

dAd
(25)dpV dd__td---_-=V + pL dt

-8-
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From (ZO),

then

(7), and (11)

0p_ K cgQ cgp Po 0p

at Po Ao 0x at K 1 at at

aAd CdDdAd 0p

Eh at

dpV -KL% 1 8Q

where Ad,

restraint constant of the damper, respectively.

D d and C d are the cross-sectional area, diameter, and the end

The boundary condition for x = £ will be

(26)

Ad /_ll OQ
CdDd_

KL_- ° + _-_dT_-x + Q: Ql(t)
(Z7)

-9-
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SEC TION 2. SOLUTION OF EOUATIONS OF UNSTEADY

MOTION BY LINEARIZATION

For small pressure variations, the equations of unsteady motion in an

elastic pipe with turbulent friction losses from (14) and (15) are

Op ap z o____u (z8)8-_ + u _xx = -Po a 8x

8u 8u I 8p f 2

8-T"+ u -_x - Po 8x 2D u (29)

Let

P = Po +AP

u = u +Au
O

or written simply as

or written simply as

P=Po+P

U=U +U

O

(30)

Equations (28) and (29) yield the following sets of equations for the steady

and the perturbed motions.

8Po 2 8Uo
U _" -
o --_-x Po a Ox (31)

u
o

8u f
o I 8Po 2

-- = U

8x Po 8x 2D o
(3Z)

_- + (u° + u)\ ox +_x = -_oa \_ +
(33)

+ u) _ + - \axP o

+ u)2 (34)

-I1-
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Considering the steady-state values of Po and u o to be known and their

variations along the x-axis small, then the perturbed equations after neg-

lecting terms of higher order will be

ap ap Z au (35)
a-l-+ u ....o 8x Po a ax

Ou 1 ap
8u + u ...... ku (36)

at o ax Po ax

where

fu
o

k =--=k
D t

o

for turbulent friction loss and

32V
k - -----_ - k%

p D
o o

for laminar friction loss

Using Laplace transform and the assumption of zero initial conditions

p(x,O) = O, u(x, O) = 0 (37)

Equations (35) and (36) become

ap 2 8U (38)sP+u
o _x Po a 8x

8U 1 8P (39)(s + k)U + u .....
o ax Po 8x

or upon differentiation,

82P aP 2 82U

u _ + s 8x Po a 8x 2°Sx

(4O)

u
o

8U 1 8ZP

--+ (s + k) _xx = - p% 8x 2

(41)

- 12-
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After some algebraic manipulation between Equations (38) through (41), we

have two decoupled differential equations, one for U(x, s) and one for P(x, s).

(az -uZ) --aZU-uo(ZS +k)_%U- s(s +k) U = 0
o 8x 2

(42)

(az - U Z) 82P 8P

o 8x Z Uo(ZS +k)_x - s(s +k) P = 0 (43)

Let

U(x, s) = A(s) emx

mx
P(x, s) = B(s) e

where m is determined by the characteristic equation

(44)

(a2 2- u 2)m - u (2s + k)m - s(s + k) = 0 (45)
o o

/22
Uo(ZS +k) +VUo k + 4aZs(s +k)

m -- (46)
2(a 2 - u 2)

O

Hence

= m2x
U A 1 em Ix + A 2 e

P = B 1 emlx + B 2 em2 x

(47)

The relations between A and B can be determined by putting (47) into

(38) and (39)

I I xIA2 oa2 Im°xAlPoaZml+Bluoml+Bl s eml + mz+Bzuomz+B2 s e _ --0

x m,_ x
luoml+_ml+Al(S+k) e mt + 2Uom2+_m2+A2(s+k e -

Po Po
=0

13-
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Since

mlxe #0,
m 2 x

e #0

we have

p°aZml 1

B I =-AI Luoml +sj

[Po(Uoml + s +k)]B 1 = _ A 1
[ ml

Hence

2

po a m

u m+s
o

- PoUo

s+k

+ Po m

Poa2m2 ]

BZ = -AZ [Uomz + sj

p oluomz + s + kJB 2 = _ A 2 m 2

_[I1,1 for m = m 1

[i2, for rn m 2
(48)

-4

and

U(x, s) = A 1 e mix + A 2 e m2x [

!
mlx m2xt

P(x, s) = -AII 1 e A212 e J

(49)

Let the boundary condition at x = 0 be

U(o, s) = Uo (s) P(o, s) = Po (s)

When applied to (49), it yields

U =A I +A 2o

P = -Allo 1

A 1 =

P + Uol 2o

12 - II

P + Uol I
o

A 2 = ii I2

14 -
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Hence

Atx=£

U(x,s) =

P(x,s) =

P + Uol 2 P + Uol 1o mlx o
e

I2 - I1 IZ - I1

rn2x
e

II(P +UoI 2) I2(P + UoI I)
o mix oe +

12 - I 1 12 - I 1

e m2x }
(5O)

[i2 ii i [ 1U_ U _ eml£ __ em2_ 1 (eml£
= o I2 I1 - Iz - I1 + Po I2 - I1 - em2"_)

[iii2 [i2 iI ]P£ = Uo 12 -T 1 (em2_- eml + Po 12 -I 1 em2 - 12 - I1 eml _

Let G(s) be the transfer matrix defined by

(51)

G(s) =

/ I2 mi£ I1 m2£
e e

Iz - I 1 12 I 1

I 112

IZ - II

(em2"6 _ eml

then (50) can be written as

I (eml £ _ m2_ )

12 _ ii e

Iz em2_ Ii eml

Iz - II Iz - II

(5Z)

U£

P£

= G(s)

U o

Po

(53)

which represents the dynamic characteristics of the unsteady friction flow
in an elastic line.

-15
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From (53), we have the following relations:

Uo(S ) I2 + 1 em2_ - I1 + 1

(54)

P_(s)

Po(S)

(Iz - Ii) e (ml+m2)i

ml_ Z
II + I2 e - I2 + II e m2

(55)

U£ e(ml+m2) _

Uz(s) _ (I2 - Ii)

)Uo(S) UZ UZ
I2 + 1 em2'Z - I1 + e ml

(56)

where m I, m 2, II and I2 are functions of s as defined in Equations (46)

and (48).

Substituting s = jco in (54) to (56), we can compute the magnitude and

phase angle of
U (jo_)

0

(a) the ratio of velocity to pressure deviations, p (j¢0)' at x = 0,
versus frequency o

(b) the ratio of pressure deviation at x = £ to pressure deviation at

P_(jo_)

x = 0 p (jco)' versus frequency.
O

(c) the ratio of velocity deviation at x = £ to velocity deviation at

u_(j_)

x = 0, U (J_• ), versus frequency.
O

-16-

SID 66-46-1



NORTH AMERICAN AVIAT!ON, INC. SPACE and INFORMATION SYSTEMS DIVIS.ION

The boundary condition at x = % is

a a 7.(_, t)
AIE _xZ(£, t) + _ _-_ = p£(A-Api ) (62)

where A is the cross-sectional area of pipe, AI, the cross-sectional area of

pipe wall, Api the cross-sectional area of pump inlet and _ the coefficient of

damping of the bellow• The Laplace transform of (6Z) is

a

AIE _x Z(x, s) Ix=£ + _sZ(x, s) Ix=£ = p_(s)[A-Api ] (63)

Sub stituting

Z(x, s)Ix= _ = B(s) sinh_-_sxlx=_ (64)

into the above equation and solving for B(s), we have

B(s) :
P_(s) [A - Api ]

V_ v_-_s s_nn_- sAlE s cosh £ +_ s " -%/'_-S

(65)

Hence, (64) becomes

z(t,s)=
P_(s) [A - Api ]

S [AIE_//-_"_ cot h%/_ s_ + _]

(66)

The transfer function relating the velocity at x=% to the pressure at

x=¢, is

A - A
s Z(_,s) _ pi

P£(s) AIE%/_ cot h%/'_ s£ +{

This factor is to be added to the term U£/P_, in Equations (54), (55), and

(56). The deviations in magnitude and phase which occur near the natural

frequency of the longitudinal vibrations of the pipe can be seen from the

computational results shown in Appendix A.

(67)

- 18-
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2.Z PHYSICAL CONSTANTS AND RESULTS OF LINEARIZED ANALYSIS

The following physical constants are based mostly on information

applicable to Saturn S-II Stage.

a

Constant

Table I

internal radius of pipe (D = 2r)

length of pipe between tank and

P

K
1

h

E

(1

A

A h

A
pi

C

v

V

u
o

Values for LH 2 Line

0. 333 ft.

20.83 ft. (outboard)

pump

velocity of pressure wave

1
a =

cD
+ E---/-

density of fluid at steady state

bulk modulus of fluid

thickness of pipe wall

Young' s modulus of pipe wall

density of pipe wall

cross-sectional area of pipe

31.9Z ft. (center

3700 ft/sec

0. 136 Ib-secZ/ft Z

2. 15 x 106 ib/ft Z

-3
1.83 x l0 ft

4.32 x l09 ib/ft 2

14.8 ib-secZ/ft 4

0. 348 ftZ

cross-sectional area of pipe wall

cross-sectional area of pump inlet

restriction factor of pipe

Poisson' s ratio of pipe wall

damping coefficient of bellow

viscosity of fluid

steady-state fluid velocity

0. 00383 ft2

0. Z56 ft2

0.85

0.30

0 (assumed)

-5
0. 029 x 10

51.5 ft/sec

Ib - se c /ftg

-19-
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U_

P

k t

Constant

Table I (Gont)

steady-state velocity-pressure

ratio (determined from the steady-

state pressure versus flow curve)

laminar resistance coefficient

kf = 3Z_/po D2

Darcy-Weisback resistance coeff.

Values for LH 2 Line

-4
1.55 x 10 per sec

-4
1.55 x 10 per sec

turbulent resistance coefficient

fu
0

kt - D

O. 0775 (outboard}

O. 059 (center}

5.98 per sec (outboard)

4.54 per sec (center)

With the above information the frequency response equations (54),

(55), and (56) were programmed on the IBM 7094 for both LOX and LH 2 lines.

The numerical results for the outboard LH 2 line of S-If stage are illustrated

in Appendix A, Figures A-I through A-12. The magnitude and phase angle

of Uo(jco)/Po(j_) versus 0_ are shown in Figures A-I through A-4 according to

the type of hydraulic resistances and with or without the effect of line

vibrations. Similarly, the magnitude and phase angle of P_(jc0)/Po(j_0)

versus _0 are shown in Figures A-5 through A-8. The magnitude and phase

angle of U_(j_)/Uo(j¢o ) versus ¢0 are shown in Figures A-9 through A-I2.

20-
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SECTION 3. SOLUTION OF NONLINEAR EQUATIONS OF UNSTEADY

MOTION BY THE METHOD OF CHARACTERISTICS

The transient pressure of unsteady flow with a turbulent resistance in

an elastic pipe undergoing an acceleration am requires the solution of the two

nonlinear partial differentialEquations (14) and (15a}.

310 + 3p 3u
at U_x = -paZ a-_" (68)

au + ua___u= lop_ f_L.u 2 + am sin8 {69)
3t 3x p 3x 2D

The governing equations cannot be solved analytically. However, these two

equations can be transformed into a set of ordinary differential equations by

the method of characteristics and then solved numerically.

Define a characteristic curve of Equations (68) and (69) to be a curve

along which a solution of Equations (68) and (69) may have discontinuities in

the derivatives of the velocity and pressure. Suppose that such a curve is

given by

x = x(s), t = t(s) (70)

and that u and p are prescribed at each point of this curve. Then u and p

become functions of s and we have a system of four equations in four unknown

partial derivatives Ux, ut' px and Pt" These four equations are

3__u+ uOU + 1 3p _ f u 2 + a m sin O
8 t 3x p 3x 2D

ZOU _p+ 3p
pa _xx + at U_xx : 0

(continued on next page)

-21 -
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8u dt + 8u
a-i- = du

8_p_pdt + 8p
at _x dx = dp

(7l)

The discontinuity relation requires that there be at least two distinct

sets of values of these derivatives which satisfy Equations (71). The con-

ditions under which Equations (T1)will admit of more than one solution

require that

1

i u o ?-

0 pa 2 1 u

dt dx 0 0

0 0 dt dx

=0 (72.)

and

1 u 0 - fu2 + am si'ne
ZD

0 pa z 1 0

dt dx 0 du

0 0 dt dp

= 0 (73)

Expanding these determinants (72) gives

dx
-- - U =-l-a
dt

(74)

and (73) gives

du f u2 1 (dx _tp)d--i-+ _-_ -amsinO +----_ _-- u
pa

=0 (75)

- 22 -
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Putting the relation (74) into (75), it becomes

du _D i dpd--t-+ ug - a m sin O ±_-_ d-_ = 0 (76)

In these equations where the ± sign appears, the plus sign is associated with

the characteristic C + and the minus sign with the characteristic C-.

Equations (74) define the slope of the characteristics C + and C- as

a function of velocity of flow, u, and the velocity of pressure wave, a.

Equations (76) are the compatibility equation relating the velocity u and

pressure p along the characteristic lines C + and C-.

Equations (76) are two separate, total differential equations with t as

independent variable and u and p as dependent variables. If u = u(x,t) and

p = p(x,t) satisfies Equations (68) and (69) then Equations (74) determine

two families of characteristic curves C + and C" in the x,t plane belonging

to the solution u(x,t) and p(x,t). These four Equations (74) and (76) can be

solved by finite difference approximations with appropriate initial and bound-

ary conditions.

3. 1 SPECIFIED TIME INTERVALS

There are two ways in which the characteristic curves C + and C- may

be used to obtain an approximate numerical solution to the original partial

differential equations. One method involves the use of a grid of character-

istics and the other makes use of specified time intervals. In using the

former method, it would be difficult to arrange the computations so that the

points of intersection of the characteristics occurred at values of x and t

on a rectangular grid. The use of specified time intervals has one main

advantage over the use of a grid of characteristics in that it provides results

of the flow field at different times. Hence, from a programming viewpoint,

the ordering of the computations would appear to be easier by this method

than by the use of a characteristic grid, since the values of the dependent

variables are known at predetermined points and the additional information

of the corresponding x and t coordinates does not have to be recorded.

For this reason, this is the approach which will be used in the present

analy s is.

3. Z SELECTING MESH RATIO

The first step in using the method of specified time intervals requires

selecting a mesh ratio_t/Ax for the finite difference approximation. The

- 23 -
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selection of an "admissible" mesh ratio plays a vital part in the success of

the numerical process. It insures that the difference equations actually do

approximate the differential equations so that anumerical solution of the

former should be a good approximation to the exact solution.

The region bounded by the two characteristics C + and C-, and a third

non-characteristic curve such as PRCS shown in Figure g is a region in

which a unique solution to the original partial differential equations would

exist provided conditions along RCS are prescribed. Thus, it is only logical

to select a mesh ratio such that the solution will lie within this "zone of

influence. " This condition will be satisfied if the mesh ratio is less than the

slope of the characteristic curves as given by Equation {74), since geometri-

cally the mesh ratio plays the role of "finite difference characteristics. "

Under this conditon, the finite difference scheme should be a valid represen-

tation of the differential Equations (14) and (15a).

If the variation in the velocity of wave propagation is assumed small

so that it may be taken equal to its steady-state value a o, then for

At i
-<- (77)

Ax u±a
0

we would expect the solution of the difference equations to tend to that of the

differential equations as At --- 0. Geometrically, this means that R must

lie within AC and S within BC in Figure 2. The condition given by Equa-

tion (77) also insures the stability of the numerical process. Since the

_L
h

C

\
C ÷

x

Figure 2.
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velocity u < < a o, the criteria used in the present study for selecting the

mesh ratio was

At 1

Ax a
0

The accuracy of the finite approximations deteriorates if the mesh ratio is

much less than 1/a o although their solution will be stable. Optimum accuracy

is obtained when the finite difference characteristics coincide with the con-

tinuous characteristics of the governing differential equations. For a system

whose true characteristics are curved such as in the present case, the

optimum accuracy cannot be obtained using a fixed rectangular grid since

the finite difference characteristics must necessarily have smaller slopes

than the true characteristics to ensure stability of the numerical process.

3.3 COMPUTATIONAL PROBLEM

The computational problem which must be dealt with is illustrated in

Figure Z. On the rectangular grid in the x,t plane as shown here, the

velocity and pressure are known at each mesh point, such as A, B, and C

for time tl, either as given initial conditions or as a result of a previous

stage of the calculations. The problem is to determine the conditions

(velocity and pressure) at a typical point P corresponding to time ti + I.

The coordinates of point P in the x,t plane are therefore known. Through

this known point, we pass the two characteristic curves C + and C-, inter-

secting the line t = ti at points R and S respectively. Both the velocity

and pressure are unknown at the three points P, R, and S, and the space

variable is unknown at the latter two points, giving a total of eight unknowns.

3.4 INTERPOLATION FORMULAS

In the analysis to follow, the various variables associated with a given

point will have that point's designation used as a subscript, such as uA,

PA, XA ..... etc.

Since the characteristics C + and C- pass through points R and S

respectively, expressions are needed for the velocity and pressure at these

two points in order to compute the condition at P using these two curves.

This is done by fitting a parabola through the known values at A, C, and B,

and then interpolating. For example, let us consider the case of calculating

the velocity uR at point R. (See Figure 3.}

-25 -
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uC

uR

u A

/
/

XA x R x C

Figure 3.

Using the second order equation

u(x) --a + b(x - Xc) + c(x - Xc)2 (78)

and applying it to the three points x A, x B, and x C where the velocities are

known, we obtain three algebraic equations for determining the coefficients

a, b, and c. Applying Equation (78)to x = x C shows immediately that

a=u C
(79)

Application to the remaining two points yields

uA = a + b(x A - Xc) + c(x A - xc) Z (80)

u B = a + b(x B - Xc) + c(x B - xc)Z (81)

-26 -
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Since successive mesh points along the x axis are _x units apart, we can

express xA and xB in terms of x C as

x A = x C -_x

x B = x C + Ax

On substituting these two relations into Equations (80) and (81), they become

uA = a -b • _x + c(_x) z (82_)

uB = a + b • Ax + c(_x) Z (83)

Making use of the result given by Equation (79) and solving Equations (8Z)

and (83) simultaneously, we find that

1

b - aax (UB - UA) (84)

C - 2 (UA + UB - ZUc)
(85)

With the three coefficients a, b, and c determined, we apply Equation (78)

to x --x R and obtain

]

UR : Uc + Z_x (UB - UA)(XR - Xc) "_
z(m×)

Z (UA + UB - 2Uc)(xR - Xc)2

(86)

The same functional form given by Equation (78) is also assumed for

the pressure variation between the three adjacent points xA, XB, and x C.

Under this assumption, the coefficients given by Equations {79), (84), and

(85) are valid provided that the velocities uA, UB, and u C are replaced

-27-
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respectively by the corresponding pressures PA' PB' and PC" Thus, the

following quadratic interpolation relationships can be written down

immediately:

i i

PR = PC + 2-_--_x(PB - PA){XR - xC) +
2(a×)

Z {PA + PB - ZPc)(XR - xc )Z
(87)

1 1
Us --uc + z-N-£x(uB " UA)(xs - xc) +

Z(Ax)Z (UA + uB
- ZUc)(X S - xc)Z

(88)

I

PS = PC + _ {PB - pA)(X S - Xc) + 1 (PA + PB - 2Pc)(Xs - Xc )2
2(Ax)z (89)

These four equations form a necessary part in the computational scheme.

The other four equations needed to obtain a solution are given by the charac-

teristic Equations (74) and (76).

3.5 FINITE DIFFERENCE APPROXIMATION

Let us confine our immediate attention to the two characteristic equa-

tions associated with the characteristic C+; i.e., we consider the plus sign

in Equations {74) and (76). These two equations are transposed into finite

difference form by replacing the differential coefficient by a divided difference

over an interval and replacing the other variables by the arithmetic mean

over the interval. This finite difference approximation is one of second

order, and hence it is compatible with the interpolation formulas given in

Equations {86) through {89).

On applying the foregoing procedure to Equations (74) and {76), and

transposing, we obtain

uR + Up o)XR = Xc - 2 "+ a At (90)

f Up)g PP - PRUp - UR+-_-_(UR+ _t-a sin 8.At + = 0 (91)
m Po ao
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It is assumed that the friction coefficient is a constant, and furthermore,

that the variations in density and velocity of wave propagation are sufficiently

small so that they may be taken equal to their respective value at steady-

state conditions. The subscript "o" refers to steady-state values.

Similarly, the corresponding equations associated with the character-
istic C- are

_(u S + Up o)XS = XC 2 a At (92)

PP - PSUp) 2Up - u S + (uS + At- a sin O • At - O (93)
m Po ao

The above four equations, together with the four interpolation formulas,

Equations (86) through (89), form a set of eight nonlinear simultaneous

algebraic equations for the determination of the eight unknowns XR, UR,

PR' xs, us, PS, up and pp. The problem now is to organize a computational

tional procedure suitable for solving these eight equations on a digital

computer. Without resorting to a simultaneous solution of these eight equa-

tions, the most practical way would be by iteration.
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SECTION 4. COMPUTATIONAL PROCEDURE

One method of obtaining the conditions at point P by iteration using the

nonlinear algebraic equations (86) through (93) is the following:

1. Make an estimate of the conditions at R, S, and P by assuming

that they are the same as those existing at C. In other words,

o o o

u R = uS = Up = u C

o o o

PR = PS = PP = PC

The superscript "o" refers to the initial guess, or zeroth

approximation.

Z. Using these estimates, calculate x_ and x ° from Equations (90)

and (92), respectively.

1 1 13. Making use of the results in step 2, calculate u ' PR' Us' and PS
from Equations (86) through (89) inclusive, respectively.

4. With the values obtained thus far for the first iteration, solve

Equations (91) and (93) simultaneously for u 1 and p_.

The foregoing process is continued until successive values for both

velocity and pressure at point P are within the prescribed tolerance.

4. 1 INITIAL CONDITIONS

In order to start the computational procedure, as outlined above, we

must have the initial conditions corresponding to time t = 0. The initial

conditions in the propellant line are taken as those corresponding to the

steady-state condition. Due to friction losses along the length of the pro-

pellant line, the pressure at each mesh point on the x-axis must necessarily

be different from one mesh point to another. The friction coefficient can be

calculated from the experimental data that gives pipe resistance versus flow

rate. It is tacitly assumed that this friction coefficient obtained under

steady-state conditions is applicable to transient phenomena and also remains

a constant throughout the line.

-31 -

SID 66-46- 1



NORTH AMERICAN AVIATI. O N, INC. SPACE and INFORMATION SYSTEMS DIVISION

Within the framework of one-dimensional flow, the velocity u in the

line must be a constant in the case of steady flow. This is immediately

apparent from the continuity Equation (1) when one invokes the condition of

steady flow whereby the flow field is independent of time, and hence, reducing

it to

_-x-x(pUa ) = 0

Since we are considering propellant lines of constant cross-sections and

ignoring any variation in p, it is readily seen that u must be a constant.

Under this condition, the equation of motion given by Equation (15a) reduces

to

Po

2
U

dp + _..f. o-- -a sin O
dx D g m

= 0

On integrating this equation and applying the result to two consecutive mesh

points, we have

Pl

U o

- P2 = Po _ _--a sinm
(94)

where the subscript "1" designates the upstream mesh point and the subscript

"2" the downstream mesh point. In the absence of the acceleration term

a m sin e, Equation {94) is equivalent to the well-known formula used in

hydraulics to calculate the head loss in a pipe.

4. Z BOUNDARY CONDITION AT LEFT END OF LINE

For the boundary condition at the left end of the line, we assume that

the pressure in the tank remains a constant. This condition is very nearly

fulfilled since the behavior of the system is of interest only during the first

few seconds following the initiation of the disturbance. The value of this

constant pressure is taken equal to the steady-state value just prior to the

introduction of the disturbance in the line.
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A C B

Figure 4.

To calculate the velocity corresponding to this given pressure, we may

proceed in the following manner (refer to Figure 4):

1. Assume initially that the velocities Up and u S are equal to u A ,

i.e., u_ = u_ = uA .

2. Using these assumed values, calculate x_ from Equation (92) with

x C replaced by xA = 0 .

1 1
3. For this value of

x S, compute u_ and p_ from Equations (88) and
(89), respectively.

4. Solve for uI from Equation (93) using the results of Step 3.

This process is repeated until two consecutive values of up agree within the

specified accuracy.

4. 3 BOUNDARY CONDITION AT RIGHT END OF LINE

It is assumed that the disturbance in the system originates at the right

end of the line where the pump is located. Some of the various boundary

conditions which may be considered have been already discussed in Section

1. 3. Before considering these boundary conditions where some sort of

regulating device is present in this preliminary investigation, we will merely

specify a particular disturbance. Since any sort of disturbance will affect

the flow rate and hence the fluid velocity, we will consider the disturbance

as a change in velocity. The disturbance is taken in such a manner that it

causes a decrease in velocity at the point of origin, and hence in turn pro-

duces an increase in pressure.
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4.3. 1 Velocity Impulse Disturbance

Art

Figure 5.

If the righthand end of the feed line is provided with a valve and this

valve is suddenly closed a certain amount and then reopened instantaneously,

we would have an impulse disturbance. The magnitude of this disturbance

will depend upon the amount of closure before reopening takes place. The

maximum impulse will occur, of course, when the valve is closed completely

before it is reopened. (See Figure 5.)

For a velocity change that takes the form of an impulse, the conditions

at the right end must be recalculated before proceeding with the solution in

the x,t plane. The corresponding pressure change Ap due to a Au change

in velocity can be found from momentum considerations. The result is

Ap = Po ao Au (95)

Therefore, the conditions which we have at the right end at time t = 0 due

to the impulse are

U ----U
O

P = PO

(96)

where u and Po are the steady-state velocity and pressure, respectively,
• O

prtor to the introduction of the impulse.
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A C B

C +
/

Figure 6.

In calculating the two unknowns at point P when t > 0, another relation-

ship is required besides the equation for the characteristic curve C +. This

additional relation is obtained from the condition that the discharge at any
time must obey the orifice law. Hence,

1/2
Ip_\

Up = u (-_) (97)

where the quantities with a bar over them represent reference values.

They may be thought of as the "equilibrium conditions" about which the

transients caused by the disturbance oscillate. In the case of an impulse,
the steady-state values are used as reference.

The calculation of Up and pp may proceed as follows:

1. Assume that initially the velocities at R and P are equal to that

at B (refer to Figure 6); i. e. ,

o o

u R = Up = u B

2. Calculate x_ from Equation (90) with x C replaced by x B = • .
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1

4.

I
Compute uI and PR from Equations (86) and (87), respectively.

1 1

Solve Equations (91) and (97) simultaneously for Up and pp .

As before, this procedure is repeated until two successive values of both

Up and pp are within the specified tolerance.

4.3.2 Velocity Step Disturbance

We define a step disturbance as that caused by an instantaneous partial

closure of the valve with the valve held at this new position. Thus, the step

disturbance in this sense does not mean that the velocity is maintained at

this new value for all time, but the position of the valve itself represents

a step function. The position of the valve creates a new "equilibrium

position" which the flow will eventually attain after the transients due to the

disturbance have subsided.

As in the case of a velocity impulse, we must first calculate the new

conditions at the right end due to the step disturbance before proceeding with

the solution. These new conditions are computed in exactly the same manner

as was done in the case of the impulse. The pressure change is given by

Equation (95), and the new conditions by Equation (96). The only difference

between the two cases is that for the step disturbance we use the new con-

ditions given by Equation (96) for reference values in Equation (97) instead

of the steady-state values. With this one change, the computational proce-

dure for calculating the velocity and pressure at point B on the boundary

for t > 0 is identical to that outlined for the case of an impulse.

4.3.3 Sinusoidal Velocity Disturbance

The procedure given in Section 4.3. Z for handling a step disturbance

may be extended to handle any other type of disturbance or pulse shapes

simply by replacing the given disturbance by an equivalent series of step

functions. By equivalent, it is meant that both the composite step function

representation of the given disturbance and the disturbance itself have the

same area under the curve.

Suppose that in the absence of propagation effects, the disturbance

under consideration took the form of a sine function OAB as shown in

Figure 7. We first divide the half-time period tA into suitable time incre-

ments At. From the computational standpoint, it is convenient to choose

AT equal to either At, the time interval used in the difference equations, or

a multiple thereof. Within each interval, the ordinate for the "step" is

selected by either visual inspection or other means such that the area under

the "step" is equal to that under the actual curve. In this way we replace
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4

A B

Figure 7.

the sine curve by the "staircase"approximation 01234 A...B, and this

function is the one which willbe dealt with in our subsequent discussion.

Corresponding to the instantaneous velocity change AU a for the

first step "012" of the staircase approximation, the pressure change is

obtained from Equation (95) as before. Since it is assumed that the dis-

turbance takes place only after steady-state conditions have prevailed in

the line, the new conditions at the righthand end after the disturbance has

taken place is given by Equation (96). The calculation for the pressure

and velocity at the right end for 0 < t < AT now proceed in the manner

given in Section 4.3. l where the new conditions existing there are used

as reference values. This iteration process is continued for as many

steps as necessary until the specified tolerance on the dependent variables

have been met. We now arrive at point "2" on our staircase approxi-

mation so that step "234" comes under consideration. The response of

the system due to this step input during the time AT < t < 2 AT is

handled in the identical fashion as for the previous step in which

the reference values to be used now in Equation (97) are furnished by the
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conditions existing at time t = AT with the effects of AU b included. This

same computational procedure is continued for each succeeding "step. "

4.3.4 Feed Line With Pressure Regulating Device

In Section i. 3, the boundary condition at the right end was derived for

the case of a pressure regulating device, such as a surge tank, air chamber,

or tank damper, being present in the line. In each of these three cases, it

was shown that the boundary condition can be expressed as a first order

partial differential equation in the form

OQ +
K-_- Q g(t) at x = L (98)

where Q is the mass flow rate entering the regulating device, and g(t), a

prescribed function, is the mass flow rate discharging from the device. The

constant g is dependent upon the type of regulating device under considera-

tion, and the value it assumes for the various devices is given in Section 1.3.

It would appear that one approach of incorporating Equation (98) as a

boundary condition into the righthand end of the feed line would be to inte-

grate it and obtain a relation between Q(t) and g(t) . For any prescribed

disturbance function g(t) then, Q(t) will be known and hence also the velocity

u(g,t) and the discharge velocity are known. Therefore the computational

procedure given in Sections 4.3. I, 4.3.2, or 4.3.3 may be employed,

depending on the type of disturbance under consideration. Since Equation(98)

is a boundary condition, what we are seeking is a particular solution.

For any given disturbance, there are a number of particular solutions which

would satisfy Equation (98). Without knowing the general form of the closed

form solution for the pressure and velocity along the feed line itself, it is

impossible to tell which one of the particular solutions is the correct one.

Therefore the only other alternative is to express this equation in finite

difference form and solve it simultaneously with the other appropriate

equations at the right end, numerically.

The derivative 8Q/Ox appearing in Equation (98) can be expressed by

a divided difference over an interval Ax. However this "average" slope of

Q over the interval may be quite different from the slope 8Q/0x at x = g.

Although this difficulty may be alleviated somewhat by dividing the last inter-

val into smaller intervals, the numerical procedure would be complicated.

The reason for our difficulty in obtaining a representative finite

approximation for Equation (98) is that although it dictates the condition

which must prevail for all values of time t , it involves the derivative aQ/ax
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which in the x, t plane is in a direction normal to the t axis. Thus if the

boundary condition can be rewritten so that any derivatives present are

with respect to time instead of the spatial variable x , then it can be put in

finite difference form solely in terms of the variables at x = g. Having the

equation in this form should permit a more accurate numerical treatment

of the boundary condition at the right end of the feed line than would be

pos sible otherwis e.

4.3.4. 1 Modified Form of Boundary Condition

The boundary condition given by Equation (17b) stems from the con-

tinuity in mass flow which must exist at the junction of the device and the

feed line. For each of the three pressure regulating devices considered,

this boundary condition can be rewritten in the form

A K @--_-P+ Q = g(t) (99)
o at

by utilizing the relation between 0Q/0x and 0p/at given in Section I. 3.

The constant K characterizes the damping device and is equal to K divided

by the modified bulk modulus K defined in Equation (13), and A o is the
cross-sectional area of the feed line.

If our attention is focussed on feed lines of constant cross sections

such as in the present case, and the variation in the fluid density is assumed

sufficiently small so that it is essentially equal to its steady-state value, it

is advantageous from a computational point of view to rewrite the quantity Q

in Equation (99) in terms of the fluid velocity u. Since Q = 9oAou ,

Equation (99) takes the form

_P

_T + u = v(t) (100)

The quantity v(t) will be equal to the discharge velocity, provided the dis-

charge cross-sectional area is the same as that of the feed line; otherwise

it will be simply proportional to it. The proportionality constant in this

case is equal to the ratio of the discharge cross-sectional area to the feed

line cross-sectional area.

4. 3. 5 Numerical Procedure

Equation (I00) may be transposed into a finite difference equation

using the technique given in Section 3.5. Employing the same notation
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as shown in Figure 6, the resulting equation takes the form

PP - PB 1 1

B) =  (Vp+V B) (101)

The three quantities with the subscript B are known from the calculation for

the previous time interval, and since v is a prescribed function, Vp is also

known. Thus pp and Up are the two unknowns in Equation (101). The com-

putational procedure to determine these two unknowns may proceed in the

following manner.

I. Assume initially that u_ = u_ = u B

O

2. Calculate xR from Equation (90) with x C replaced by L .

3. Compute u_ and p_ from Equations (86) and (87) respectively.

4. Solve Equations (91) and (101) simultaneously for up and p_ .

This process is continued until successive values for both Up and pp are

in agreement within the specified limits.
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SECTION 5. COMPUTATIONAL APPROACH TO SPECIFIC PROBLEM

We are now in a position to handle a specific problem under the bound-

ary conditions described previously. Referring to Figure 8, suppose that we

have decided to divide the propellant line into five equal incremental lengths

so that the left and right boundaries coincide with A0 and A5 respectively.

One way in which the computation can be carried out would be the following.

From the given steady-state condition at A5, the velocity at A0 through A5 is
known and the corresponding pressure at these mesh points can be calculated

from Equation(94). If the disturbance under consideration involves an instan-

taneous velocity change, such as a step function, the conditions at mesh point

point A 5 must include the effect of the velocity change before we proceed with

the calculations. The incremental pressure change corresponding to this

incremental velocity change is computed from Equation(95). Superimposing

these incremental changes in velocity and pressure according to Equation (96)

onto the steady-state values at A5, we obtain the new conditions which must
prevail there because of the disturbance.

In the case where the feed line contains a regulating device and the

disturbance is a sinusoidal function, the foregoing calculation is not neces-

sary since the disturbance was not approximated by a series of step functions

and hence did not involve any instantaneous velocity changes.

t

t 2

t I
Bo 81 8 2 8 3 8 4

t=O

A0 AI A2 A3 A4 A5

Figure 8

85

X
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Having the conditions for all mesh points at t=0, we now "march out" to

time tI, and proceed to calculate the conditions at these mesh points. For

the prescribed boundary condition of constant pressure at B o, the velocity

may be determined by the procedure outlined in Section 4. 2. The conditions

at mesh points B l through B 4 are found by the procedure given in Section 4. 0.

At mesh point B 5 where both the velocity u and pressure p are unknown, we

proceed in the manner described in Section 4. 3. I, 4. 3. 2, 4. 3. 3, or 4. 3.4,

depending on the type of velocity disturbance and whether a regulating device

is present or not. As long as suitable boundary conditions are prescribed at

both ends of the feed line, the solution can be "marched out" as far as

desired.
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SECTION 6. NUMERICAL RESULTS

Some numerical results obtained from the application of the foregoing

numerical procedure to the center liquid hydrogen feed line on the SaturnS-II

engine are shown in AppendixB, Figures B-1 through B-48. The numerical

values used for the various parameters in the analysis are given in Table I

(Section Z. Z). Calculations were carried out for the feed line with and without

an air chamber when subjected to all three types of velocity disturbances

discussed previously. The air chamber was selected over the other two

damping devices discussed since it combines the space economy provided by

the tank damper and, to a lesser degree, the effectivenesswithwhichthe surge

tank alleviates pressure changes. Thus it represents a device which might

well be incorporated into a propellant feed line.

Two amplitudes were considered for each disturbance expressed as a

percent of the steady-state velocity. The amplitudes chosen were 2 and 5 per-

cent since they correspond approximately to the minimum and maximum

variation expected in the pump flow of the S-II respectively. Four frequen-
cies were selected for consideration in connection with the sinusoidal dis-

turbance. They were 7. 20, 9. 70, 11. 70, and 21. 11 cps, corresponding

respectively to the first four structural modes of the spring mass "POGO"

model of the Saturn S-II engine at 95 percent burntime.

6. 1 DISCUSSION OF RESULTS

Pressure and velocity time histories were obtained both at the right

end and at the middle of the line for the case when the feed line does not con-

tain a regulating device. The results corresponding to the impulse disturb-

ance and the step disturbance for amplitudes of 2 and 5 percent of steady-

state velocity are shown in Figure B-1 through B-8. In all cases, since only

partial reflections take place at the right end, both the pressure and velocity

in the line regain steady-state conditions in a very short time, approxin_ately

0. 10 second, as shown by a decrease in amplitude of each succeeding "spike"

or "step" following the initial disturbance. This is to be expected due to the

stabilizing influence of the unidirectional flow. With the exception of the

numerical values obtained, the general behavior of the feed line subjected to

either a 2 or 5 percent impulse disturbance is the same. This also applies

to the step disturbance.

The results for the sine disturbance are given in Figure B-9 to B-24

inclusive. The sine disturbance introduces an additional parameter, input
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frequency, which does not appear in either the impulse or sine disturbance.

For the liquid hydrogen line under consideration, it takes the pressure wave

caused by a disturbance at the right end 0. 03455 second to complete one

cycle, corresponding to a frequency of 28. 96 cps. The initial reflected pres-

sure wave of a sine disturbance with this input frequency will arrive at the

right end just when the disturbance is zero. Under this condition, the maxi-

mum fluid velocity is equal to the initial steady-state velocity and the trend

of velocity variation is toward this value. In the present four cases, the

input frequencies were allbelow 28. 98 cps so that the disturbance and the

reflected waves are out of phase with one another, causing the general veloc-

ity trend to increase with time. This was true both at the right end and at

the midpoint of the feed line. The pressure tends to decrease with time

but at a much lower rate than does the velocity. If the plots were carried out

for a sufficient length of time, the velocity in all four cases tends to oscillate

about some equilibrium value, as does the pressure. After the initial tran-

sients have subsided in the first cycle, the peak-to-peak variation of each

consecutive cycle for both the velocity and pressure is essentially zero.

Hence the effect of pipe friction is very small.

Figure B-25 through B-48 contain the results for all three disturbances

when an air chamber is located at the right end of the feed line. It was

assumed that the air chamber had a cross-sectional area of 3 sq ft (diameter

of approximately 2 ft) with the air occupying a 2-foot length of the chamber

initially, giving a volume V o of 6 ft3 under steady state flow. Since Po is

4,320 psf, this yield aVvalue of 4 x 10 -3 ft3/Ib. This value of _ was used

throughout the study whenever an air chamber was considered as present in

the feed line.

The results obtained for the feed line with and without an air chan_ber

cannot be compared directly to ascertain exactly how effective the air cham-

ber is in alleviating pressure surges, since in the former case the discharge

velocity is prescribed for all time while in the latter it obeys the orifice law.

This is obvious since the time history in the two cases will differ consider-

ably from one another whether the air chamber is present or not. However,

they can be compared with each other from a qualitative point of view. This

is particularly true for the pressure variation since, broadly speaking, the

general trend and maximum peak amplitudes are approximately the san_e

whether the discharge velocity is "fixed" or "free" as in the case where the

orifice law applies.

The effect of the air chamber on velocity and pressure at the right end

is illustrated in Figure B-29 and B-31 for a 2 and 5 percent step disturbance

respectively. It is seen that the pressure fluctuations which occur in the

feed line without a pressure regulating device are completely eliminated by

the air chamber and the overpressure decreases very gradually fronl its
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initial value caused by the disturbance. The pressure fluctuations actually

are much larger than for a "free" boundary since the damping influence of

the streaming fluid is much less in the fixed case. This is shown quite

clearly in Figure B-30 and B-32 by the larger pressure fluctuations in the

middle of the line. From this observation then, we see that the air chamber

is quite an effective damping device.

The results for a prescribed impulse disturbance with an air chamber

in the feed line are shown in Figure B-Z5 through B-Z8. One feature of these

results is that they are very similar to those for the step disturbance and

differ only from a quantitative point of view. This is not too surprising when

it is seen that the only difference between the two cases is that v(t); the

prescribed discharge velocity, assumes a slightly different fixed value after

the initiation of the disturbance. Since both cases have the same boundary

condition at the right end which differ only by a constant, the two results

must necessarily be similar.

Just how effective the particular air chamber is in alleviating pressure

surges is illustrated in Figures B-33 to B-48, which are the results for the

fixed sine disturbance. Considering the 5 percent sine disturbance, we

noticed that in no case does the maximum peak-to-peak pressure variation

exceed 15 psf, which is about 1.5 percent of the overpressure for the cor-

responding "undamped" case. Naturally for the Z percent case, the peak-to-

peak pressure variation is proportionately less. The air chamber also

suppresses the velocity so that in all cases it did not vary more than I/2 fps

from the steady-state velocity of 51.5 fps. The high frequency oscillations,

which appear in the velocity variation such as in Figure B-33 and in the

pressure variation as shown in Figure B-34, have no physical significance

but are mathematical in nature. As was mentioned earlier in Section 3.2, if

the time interval selected is such that the solution obtained coincides with

the true characteristics, then these oscillations will be eliminated.
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CONCLUSIONS

The principal objective of the present investigation was to develop

some mathematical models for the unsteady fluid motion in a propellant

feed line which may be incorporated in a closed loop dynamic system for the

analysis of longitudinal oscillations of a large liquid rocket booster. With

this in mind, the dynamic behavior of the feed line was looked at both from

a linear and a nonlinear viewpoint. The analysis of the linear mathematical

model resulted in the transfer functions given in Appendix A. The similarity
of results for both the frictionless line and one with friction taken into

account indicate that friction loss for this particular line is very small.

Since the cross-sectional area of the line is relatively large, this result is

to be expected. The inclusion of the longitudinal natural frequency of the line

resulted in a modification of the frequency response curve which is similar

to those given in Reference 10 and 11.

Some results based on the nonlinear differential equations governing

unsteady compressible fluid flow are shown in Appendix B. Although these

results cannot be compared directly with any known published data, they do

correspond to a modification of the water hammer problem encountered in

hydraulics in which the valve is only partially closed and is a function of

time. By neglecting the friction term and setting the velocity to zero at the

right end, the solution obtained agrees with the classical waterhammer solu-

tion. Hence the method provides a useful tool for inclusion in a system

dynamic study. Various disturbances were considered under two different

boundary conditions to illustrate the flexibility of the method.
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AREAS FOR FURTHER STUDY

The propellant feed line considered in the present analysis was straight

and of constant cross-section, which is a very special case. In actual prac-

tice, feed lines may involve a step change in cross-sectional area, branch

lines, bends, or any combination of these. Therefore, in order to obtain a

more realistic mathematical model of a propellant feed line, further study

should be undertaken to incorporate these additional parameters. The method

developed for the nonlinear model can be extended to handle the step change

in cross-sectional area or a feed line with branch lines quite readily by

using it as a "building block. " What these two cases require is a modifica-

tion of the boundary conditions at either end of the line so that it can accom-

modate the continuity condition for both mass flow and pressure at the point

of discontinuity in cross-section or junction of the branch lines.

Another area for further investigation in connection with the present

problem is a parametric study of the various pressure regulating devices to

determine how each parameter influences the dynamic response. For

example, the volume of air at steady-state flow may be varied by the con-

stant_ that characterizes the air chamber. In the case where two or more

parameters are involved, such as for the tank damper, such a study would

indicate which parameter has the greatest influence on the effectiveness of

any given device to dampen pressure surges. Going a step further, this

data can then be used to make a trade-off study, say between weight and

allowable space (total volun_e) versus damping effectiveness of a particular

device. This will provide information which can be used directly to "tailor"

a damping device for a particular feed line system and a particular n_issile.

Besides relieving the overpressure by mechanical devices, there are

other means based on the high compressibility of a gas which nlerit con-

sideration. One such method is injecting a gas, say heliun_, into the feed

line. The gas bubbles "soften" the fluid column and also act as an absorp-

tion device whenever a disturbance causes a propagating pressure wave in

the line. The other idea is to insert a gas-filled plastic bag in the annulus

between two concentric lines. The inner line, which carries the propellant,

contains a series of holes, allowing contact between the propellant and the

plastic bag. This arrangement has the effect of making the feed line highly

compliant to any pressure surges.
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APPENDIX A. TRANSFER FUNCTIONS

Transfer functions for the outboard liquid hydrogen line on

the Saturn S-II engine
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Figure A-1. The Ratio of Velocity to Pressure Deviation at x = 0 Versus

Frequency for Outboard LHg Line, Frictionless and Without Pipe Vibration
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Figure B-41. Velocity and Pressure Time History at Right End of Feed Line

With Air Chamber Under Sinusoidal Disturbance, Amplitude

5 Percent of Steady-State Velocity, Frequency 7.20 cps
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Figure B-42. Velocity and Pressure Time History at Midpoint of Feed Line

With Air Chamber Under Sinusoidal Disturbance, Amplitude

5 Percent of Steady-State Velocity, Frequency 7.20 cps
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Figure B-46. Velocity and Pressure Time History at Midpoint of Feed Line

With Air Chamber Under Sinusoidal Disturbance, Amplitude
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